MARS 8150 Ocean Waves - Fall 2004

Instructor:	Dr. Daniela Di Iorio,
	Rm 230 Marine Sciences Building,
	phone: 542-7020
	email: daniela@uga.edu
	Office hours: by appointment
Lectures:	Tue, Thu 9:30-10:45
	Room 229 Marine Sciences Building
Textbooks:	Atmosphere-Ocean Dynamics, by Adrian Gill
	Waves in the Ocean and Atmosphere, by Joseph Pedlosky
	many others available in the library

Course Description

This course will give an extensive treatment of wave physics and theory with emphasis on the roles of stratification, rotation, and topography. Surface gravity waves will be discussed in terms of generation, propagation and dissipation mechanisms that exist at the interface between the atmosphere and the ocean. Internal gravity waves are considered for a layered, rotating ocean with specific focus on three-dimensional propagation and reflection characteristics, and modal solutions. Acoustic waves in the ocean are used for a variety of physical and biological measurements thus an introduction to wave propagation and scattering will be presented. When wavelengths become large compared to the mean ocean depth a series of shallow water waves are formed: Laplace's tidal equations, Kelvin, Poincare', and Rossby waves. Several waves rely on variable bottom topography for their existence and so we will discuss: topographic Rossby waves and continental shelf waves. All these important types of waves that occur over short and long spatial and temporal scales.

Grading

4 Assignments	
2 Exams	40%
Project report and 20 min presentation	
A (85-100), B (75-85), C (65-75)	

Final Exam

Dec 16, Mon, 8:00-11:00 pm

Assignments

A series of problem sets will be given to enforce the ideas learned in lecture by strengthening the mathematical interpretation of waves as well as the physical description of wave theory.

Project report and presentation

Use any long term data set of your choice (for example the NOAA National Data Buoy Center (http://www.ndbc.noaa.gov/) for atmospheric, surface wave and ocean properties, the NOAA NOS CO-OPS Tides online data (http://co-ops.nos.noaa.gov/) for tidal variations along a coastline or other data sets that you find interesting such as satellite altimetery data) to present wave character-istics. You will then present your project and results in a 15 min conference style presentation with 5 min question and answer time. The project should be written up in the form of a web page for display on http://www.marsci.uga.edu/FacultyPages/Daniela/courses/MARS8150projects.html. The due date is Dec 16 - the day of the final exam.

Weekly topics

Week Lecture Topic

- Week 1 Thursday class orientation, Review concepts
- Week 2 Wave properties, Boundary conditions
- Week 3 Surface Gravity Waves
- Week 4 Total energy and energy propagation
- Week 5 Stratified fluids and internal waves
- Week 6 wave group, reflection
- Week 7 Normal Modes
- Week 8 Ocean Acoustics
- Week 9 review and Exam #1
- Week 10 Acoustic propagation, Fall Break
- Week 11 Acoustic Forward and Back Scatter
- Week 12 Shallow water waves
- Week 13 Laplace tidal equations, Poincare waves
- Week 14 Kelvin Waves; Vorticity
- Week 15 Rossby Waves, Thanksgiving Break
- Week 16 Topographic waves, class presentations
- Week 17 Tuesday review