Skip to main content
Skip to main menu


William Miller

Blurred image of the arch used as background for stylistic purposes.
  • Ph.D. 1990, Chemical Oceanography, University of Rhode Island
  • M.S. 1985, Marine Science, University of South Florida
  • B.A. (cum laude) 1979, Biology, Wake Forest University
Research Interests:

Research Emphasis: 

Photochemical reactions and their effect on aquatic carbon cycles; reactive oxygen species (ROS), trace gases, and relation to optics and biological processes

Remote sensing for  global and regional estimates of photochemical processes and biogeochemical impact.

Fluxes of trace gases and their significance to global warming, biogeochemical feedbacks and climate change

Trace element and trace metal redox chemistry, processes controlling chemical distributions and biological utilization

Kinetic modeling of observed chemical disequilibria; integration of thermodynamic and kinetic models for natural waters

Cao, F., Zhu, Y., Kieber, D. J., and W. L. Miller (2020) Distribution and photo-reactivity of chromophoric and fluorescent dissolved organic matter in the Northeastern North Pacific Ocean. Deep–Sea Research I155:103168.  doi:10.1016/j.dsr.2019.103168

Cao, F., D. R. Mishra, J. F. Schalles and W. L. Miller (2018) Evaluating ultraviolet (UV) based photochemistry in optically complex coastal waters using the Hyperspectral Imager for the Coastal Ocean (HICO). Estuarine, Coastal and Shelf Science215:199-206. doi:10.1016/j.ecss.2018.10.013

Powers, Leanne C., Jay A. Brandes, Aron Stubbins, and William L. Miller (2017) MoDIE: Moderate Dissolved Inorganic Carbon (DI13C) Isotope Enrichment for improved evaluation of DIC photochemical production in seawater. Marine Chemistry194:1-9. doi:1016/j.marchem.2017.03.007

Tolar, B.B., Powers, L.C., Miller, W.L., Wallsgrove, N., Popp, B.N., Hollibaugh, J.T. (2016). Ammonia oxidation in the ocean can be inhibited by nanomolar concentrations of hydrogen peroxide. Frontiers in Marine Science, 3:237. doi:10.3389/fmars.2016.00237

Cao, F., Medeiros, P. M., and W. L. Miller (2016) Optical characterization of dissolved organic matter in the Amazon River plume and the adjacent ocean. Marine Chemistry, 186: 178-188. doi:10.1016/j.marchem.2016.09.007.

Medeiros, Patricia M., Michael Seidel, Jutta Niggemann, Robert G. M. Spencer, Peter J. Hernes, Patricia L. Yager, William L. Miller, Thorsten Dittmar, and Dennis A. Hansell (2016). A Novel molecular approach for tracing terrigenous dissolved organic matter into the deep ocean. Global Biogeochemical Cycles. 30, 689–699, doi:10.1002/2015GB005320

Powers, Leanne C., and W. L. Miller (2015) Hydrogen peroxide and superoxide photoproduction in diverse marine waters: A simple proxy for estimating direct CO2 photochemical fluxes. Geophys. Res. Lett., 42: 7696-7704. doi:10.1002/2015GL065669

Powers, Leanne C., L. C. Babcock-Adams, J. K. Enright and W. L. Miller (2015) Probing the photochemical reactivity of deep ocean refractory carbon (DORC): lessons from hydrogen peroxide and superoxide kinetics, Marine Chemistry,177(2): 306-317. doi:10.1016/j.marchem.2015.06.005

Medeiros, P. M., M. Seidel, L. C. Powers, T. Dittmar, D. A. Hansell, and W. L. Miller (2015), Dissolved organic matter composition and photochemical transformations in the northern North Pacific Ocean, Geophysical Research Letters,42:863–870. doi:10.1002/2014GL062663

Reader, H. E., and W. L. Miller (2014) The efficiency and spectral photon dose dependence of photochemically induced changes to the microbial lability of dissolved organic carbon. Limnology and Oceanography, 59(1):182-194

Reader, H. E., and W. L. Miller (2012) Variability of carbon monoxide and carbon dioxide apparent quantum yield spectra in three coastal estuaries of the South Atlantic Bight, Biogeosciences9:4279-4294, doi:10.5194/bg-9-4279-2012.

Fichot C. G., and W. L. Miller (2010) An approach to quantify depth-resolved marine photochemical fluxes using remote sensing: Application to carbon monoxide (CO) photoproduction. Remote Sensing of Environment114:1363–1377.

Tedetti, M., R. Sempéré, A. Vasilkov, B. Charrière, D. Nérini, W. Miller, K. Kawamura, and P. Raimbault, (2007) High penetration of ultraviolet radiation in South Pacific waters, Geophysical Research Letters, 34:L12610, doi:10.1029/2007GL029823

Moran, M.A., and W.L. Miller (2007) Microbial carbon biogeochemistry in the coastal ocean: resourceful heterotrophs make the most of light, Nature Rev. Microbiology, 5:792-800.

Ziolkowski, L.A., and W.L. Miller (2007) Variability of the quantum efficiency of CO photoproduction in the Gulf of Maine. Marine Chemistry, 105:258-270.

Bouillon, R-C., W.L. Miller, M. Levasseur, M. Scarratt, A. Merzouk, S. Michaud, L. Ziolkowski (2006) The effect of mesoscale iron enrichment on the marine photochemistry of dimethylsulfide in the NE subarctic Pacific. Deep Sea Research II (Special SERIES Issue), 53:2384-2397.

Bouillon, Rene, and William L. Miller (2004) Determination of apparent quantum yield spectra of DMS photo-degradation in an in situ iron-induced Northeast Pacific Ocean bloom, Geophysical Research Letters. 31(6):6310-6310.

Johannessen, S.C., W.L Miller, and J.J. Cullen. (2003) Calculation of CDOM absorbance spectra and UV attenuation from satellite ocean colour data. Journal of Geophysical Research108(C9):3301.

Miller, W.L., and R.G. Zepp.  (1995) Photochemical production of dissolved inorganic carbon from terrestrial input:  Significance to the oceanic organic carbon cycle.  Geophysical Research Letters22(4):417-420.

Miller, W.L., D.W. King, J. Lin, and D.R. Kester.  (1995) Photochemical redox cycling of iron in coastal seawater.  Marine Chemistry, 50(1-4):63-77.

Events Featuring...

261 Marine Science Bldg.

The oceanic DOC pool is comparable to the carbon inventory in both atmospheric CO2 and in the total biomass on earth. It’s reactivity, defined by its timescale of oxidation, reflects the complexity of this massive carbon pool and forms a continuum from labile, semi-labile, to refractory carbon constituents. Our studies using HOOH and O2- proxies, as well as novel direct measurements of CO2 photoproduction demonstrate that the capacity for DOM photooxidation to CO2 is not linear with photon dose, showing a strong loss of CO2 production efficiency within minutes to hours as irradiation proceeds. This argues that previous estimates of CO2 photoproduction based on extended irradiations do not capture the initial rates critical for photochemical models and consequently suggests that the photochemical sink for DOM in the surface ocean may have been significantly underestimated. The most refractory DOC compounds, thought to be ~4000-6000 yrs old on average, could represent over 90% of the inventory of oceanic DOC and are only rarely exposed to sunlight. Shipboard and laboratory irradiations of samples collected from 0 to 5000m as part of a Gulf of Alaska survey allowed photochemical comparison of the proposed DOC reactivity continuum using CO, superoxide, and HOOH production. Unlike surface irradiations, results suggest that photochemistry has been overestimated as a sink for this deep refractory DOC pool and plays only a minor role (<10%) in its direct removal.  Here we bring these elements together to provide a reevaluation of the role of photochemical oxidation in oceanic DOC budgets, providing new estimates based on new insight regarding reactivity and initial rates.


239 Marine Sciences Bldg.

Support us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.